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CONTROL CHARACTERISTICS OF VARIOUS COMBINATIONS OF THE

COMPONENT PARTS OF TWO CANARD AIRPLANE CONFIGURATIONS

AT MACH NUMBERS OF 1.41 AND 2.01

By Cornelius Driver

SUMMARY

An investigation has been conducted in the Langley 4- by 4-foot

supersonic pressure tunnel to determine the aerodynamic characteristics

in pitch and sideslip of a generalized canard airplane model. Two wings

of equal area but differing in plan form were investigated. The model

was equipped with a trapezoidal canard surface with an area 12 percent

of the wing area_ a low-aspect-ratio vertical tail, and twin ventral fins.

The interference effects of the canard wake on the wing result in

little or no gain in the total lift at a Mach number of 1.41 but at a

Mach number of 2.01 a substantial portion of the canard lift is retained
with a resultant increase in total lift. Because these interference

effects of the canard wake appear to be concentrated near the leading

edge of the wing, the proper location of the wing leading edge with

respect to the center of moments may result in a substantial increase in

the moment increment provided by a canard surface even though the total

lift provided by the canard is small. For these configurations the trap-

ezoidal wing retained the most lift and had the largest favorable moment

increment produced by the canards.

The canard configurations have the same characteristic decrease in

directional stability with angle of attack as most conventional high-

fineness-ratio supersonic configurations. Although the presence of the

canard surface caused a small increase in the directional stability at a

Mach number of 1.41 for the delta-wing configuration_ the presence of the

canards resulted in small decreases in the directional-stability level at

a Mach number of 2.01 for both wing configurations. A canard deflection

of 19° provides an increase in the positive effective dihedral approxi-

mately as large as that provided by the presence of the vertical tail.

This effect of canard deflection might complicate the lateral-control

problem in the case of a rolling pull-up maneuver.
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INTRODUCTION

The initial results of a research program at the Langley 4- by
4-foot supersonic pressure tunnel to determine the aerodynamic charac-
teristics of generalized canard airplane configurations at supersonic
speeds are reported in reference 1. Results at high subsonic speeds
are reported in reference 2. Someeffects of canard size on the aero-
dynamic characteristics at supersonic speeds are reported in reference 3.
A comparison of the stability and control characteristics of a delta-
wing configuration with combinations of trailing-edge flaps and canard
controls is presented in reference 4. The present report presents the
results for two complete models and various combinations of their com-
ponent parts at combined angles of attack and sideslip at Machnumbers
of 1.41 and 2.01.

SYMBOLS

The results are presented as force and momentcoefficients with
lift, drag, and pitching mc_ent referred to the stability axis system
and rolling moment, yawing moment,and side force referred to the body
axis system. (See fig. 1.) The reference center of momentswas at
body station 25 which corresponds to a location 17.8 percent ahead of

the leading edge of the wing mean geometric chord for the trapezoidal

wing and to a point 7.75 percent behind the leading edge of the wing

mean geometric chord for the delta wing.

CL lift coefficient, F--_L
qS

T

C D approximate drag coefficient equal to
!

F D

qS

Cm pitching-moment coefficient, MY---_s

qS_

CZ rolling-moment coefficient, MX
q_

M Z
Cn yawing-moment coefficient,

qSb

CD at zero sideslip,



Cy

FL
T

F D

ME

M Z

Fy

L/D

q

S

b

CL

_c

Cn_

ct[3

Cy_

side-force coefficient,

lift force

drag force

moment about y-axis

moment about x-axis

F_XY
qS

effective dihedral parameter,

side-force parameter,

3c
l

moment about z-axis

side force

lift-drag ratio

free-stream dynamic pressure

wing area including fuselage intercept

span

wing mean geometric chord

free-stream Mach number

angle of attack of fuselage reference line, deg

angle of sideslip of fuselage reference line, deg

deflection angle of canard with respect to the fuselage

reference line, positive when trailing edge is down, deg

6C n
directional stability parameter, .__

8o



variation of lift coefficient with angle of attack

Cm_ variation of pitching-moment coefficient with angle of

attack

Sub scr ipt s:

denotes stability axis system

max denotes maximum

Configurations:

B I body shown in figure 2; body coordinates given in table II

W I trapezoidal wing shown in figure 2(b); geometric character-

istics given in table I

W 2 delta wing shown in figure 2(b); geometric characteristics

given in table I

c4 canard surface shown in figure 2(c); geometric characteris-

tics given in table I

V I vertical tail shown in figure 2(c); geometric characteristics

given in table I

UI ventral fins shown in figure 2(c); geometric characteristics

given in table I

MODELS AND APPARATUS

The model details are shown in figure 2 and the geometric charac-

teristics are presented in tables I and II. The body of the model had

a fineness ratio of 10.57 and consisted of a parabolic nose faired into

the frustum of a cone which was followed by a cylindrical section. Coor-

dinates of the body are given in table II. The delta and trapezoidal

wings (fig. 2(b)) had hexagonal sections and aspect ratios of 2.31 and

3.00, respectively. The canard surface (fig. 2(c)) also had hexagonal

sections and the ratio of total canard area to total wing area was 0.12.

The canard deflections were set by remote control. The model was

equipped with a low-aspect-ratio vertical tail and twin ventral fins.

(See fig. 2(c).) Photographs of the models are presented in figure 3.
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Force measurements were made through the use of a six-component

internal strain-gage balance• The model was mounted in the tunnel on

a remotely controllable rotary-type sting. The sting-angle range was
varied from -4 ° to about 28 ° at various roll angles from 0° to 90 ° .

TEST CONDITIONS

The test conditions are summarized in the following table:

Mach number ................... 1.41

Stagnation temperature, oF ........... I00

Stagnation pressure, ib/sq ft absolute ..... 1,440

Reynolds number based on _ of delta wing 3.24 × 106

Reynolds number based on _ of trapezoidal
wing ..................... 2.54 x 106

2.01

i00

i, 440

2.68 x lO 6

2.10 x lO 6

The stagnation dewpoint was maintained sufficiently low (-25 ° F or

less) so that no condensation effects were encountered in the test sec-

tion. The angle of incidence was corrected for the deflection of the

balance and sting under load. The Mach number variation in the test

section was approximately ±O.O1 and the flow-angle variation in the

vertical and horizontal planes did not exceed about ±O.1 °. The base

pressure was measured and the chord force was adjusted to a base pres-

sure equal to the free-stream static pressure.

The estimated maximum variations in the individual measured quan-

tities are as follows:

CL " • " • • " " • • " • " • " • • • • " • " " • • • • • • • "

I

CD • • " • * • • • " • • • • • • • • " • • " • " ' ' " • • • "

Cn • • • • • • • • • • • • • • • * • • • • • • • • • • • • • •

Cy • . • • • , • • • • . , • • , • • • • • • • • • • • • • • •

_, deg ............................

, deg ............................

8c, deg ...........................

±0.0003

±0.001

±0.0004

±0.OO04

±O.OO01

±0.0015

±0.2

±0.2

±0.I
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RESULTS AND DISCUSSION

The order of presentation of the results is as follows:

Basic longitudinal results .................

Incremental and estimated results .............

Longitudinal-control results for the configuration with

the ventral fins removed .................

Lift-drag ratio comparisons ................

Longitudinal results in sideslip ..............

Basic sideslip results, wings on and off ..........

Effects of canard deflection on characteristics in

sideslip ........................

Summary of sideslip results ................

Figures

4 to 7

8 and 9

l0 and ll

12 and 13

14 and 15

16 to 23

24 and 25

26 and 27

Longitudinal Characteristics

The complete breakdown data for the trapezoidal-wing configuration

are presented in figures 4 and 5 and for the delta-wing configuration in

figures 6 and 7 for Mach numbers of 1.41 and 2.01, respectively. The

reference center of moments for both configurations is on the fuselage

center line at body station 25. It is recognized that this location

gives an undesirably high level of static longitudinal stability at

supersonic speeds. This position was chosen, however, as a compromise

between the longitudinal and lateral stability requirements for this

particular configuration.

Incremental results.- The incremental results for the BC-B and

BWC-BC configurations (fig. 8) were obtained as the incremental lift

and pitching-moment contributions produced by the canard and the wing.

The incremental results were obtained at corresponding angles of attack

and include the mutual interference effects between the lifting surface

and the body. As shown in figure 8, the canard contribution to lift

with the wing on is less than that for wing off; thus, there is an

adverse effect on the lift provided by that part of the wing in the

wake of the canard. The presence of the canard surface (5c = O) at

M = 1.41 results in little increase in total lift for either wing con-

figuration tested. (See fig. 8(a).) At M = 2.01, however, a substan-

tial portion of the lift due to the presence of the canard is realized.

At both Mach numbers the delta-wing configuration has a greater loss of

lift on the wing due to the presence of the canard surface than does

the trapezoidal-wing configuration. This effect, however, is not as

pronounced at a Mach number of 1.41 as at a Mach number of 2.01. The

greater loss of lift for the delta-win_ configuration probably occurs



because more of its lift is in the inboard area which is most affected
by the canard wake. It should be emphasizedthat both wing configura-
tions tested have equal or greater lifts with the canard on than the
wing-body configuration. (See figs. 4 and 5.)

The incremental wing data (fig. 8(a)) indicate that the pitching-
momentnonlinearities shownat M = 2.01 (figs. 5 and 7) for the

BWC configurations result primarily from body effects since the contri-

bution of the wing in the presence of the body is reasonably linear.

At both Mach numbers the trapezoidal wing, which has less loss of

lift due to the interference effects of the canard (figs. 8 and 9), has

an increase in the moment increment provided by the canard because the

interference lift (down load) does not act as far forward as that for

the delta wing and the interference-moment increments act in the same

direction as those provided by the canard. These effects on the moment

increment provided by the canard may be only partially explained by the

concentration of the induced loads on the inboard section of the wing.

As reported in reference 5, there may be a chordwise variation in lift

with the main interference effects concentrated near the wing leading

edge. On this basis it might be expected that the delta wing, which

has the leading edge of thewing closer to the canard surface and ahead

of the center of moments, would have the greatest loss of lift on the

wing and a decrease in the moment increment provided by the canard.

Thus it would be reasonable to expect that an increase in the distance

of the canard vortex from the wing surface would reduce the induced

down load on the wing but not materially effect the chordwise lift dis-

tribution. An investigation of the effects of relative wing height

behind a canard at M = 2.01 (ref. 6) indicated that a low-wing con-

figuration does retain more of the canard lift than a high-wing con-

figuration and that the increment of lift retained increases with angle

of attack.

Estimated results.- The variation of lift and pitching moment with

angle of attack for the various component configurations were estimated

by the methods outlined in reference 7 and are compared with the experi-

mental results in figures 9(a) and 9(b). In general, the results for

the trapezoidal wing were in better agreement with the experimental

results than those for the delta wing. Although the lift estimates were

in good agreement for both wings, the theory underestimated Cm_ at

M = 1.41 for the delta wing but overestimated it at M = 2.01. Since

no allowance for the chordwise variation in lift was made in the methods

of reference 7, where the down load is assumed to act on the wing at

the center of pressure, the good agreement with experiment shown in

figure 9 for the trapezoidal-wing configuration (BWC) may result from a

fortuitous location of the wing leading edge with respect to the canard

vortex field.
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Lift-drag ratio effects.- There was only a small decrease in

(L/D)max from M = 1.41 to M = 2.O1 for either wing configuration.

The complete delta-wing configuration had an (L/D)max of 5.95 at

M = 2.01 compared with the wing-body value of 6.8. For these tests

the delta-wlng configuration had slightly higher values of (L/D)ma x

than those for the trapezoidal wing. The lift-drag ratios for the

various component parts of the model are shown in figure 12.

Ventral fin effects.- The presence of the ventral fins (figs. 4

to 7) have little or no effect on lift but are slightly destabilizing

in pitch and caus_ a small increase in drag for both wing configurations

tested. The presence of the ventral fins caused a small decrease in

(L/D)max for both wing configurations (fig. 13). The longitudinal con-

trol results obtained with the ventral fins removed are presented in

figures lO and ll.

Combined angles of attack and sideslip.- Conventional tail-rearward

configurations have sometimes shown significant variations of lift and

pitching moment with sideslip which have contributed to serious cross-

coupling difficulties in flight. However, for the tail-forward con-

figuration tested, there appears to be no serious effect of sideslip on

these paraemters for control deflections of 0° to 15 °.

Sideslip Characteristics

The basic sideslip data for several angles of attack are presented

in figures 16 to 25. For clarity, the basic model buildup data are

plotted for the wing-on and wing-off conditions for both Mach numbers.

Canard effects.- The lateral characteristics summarized in fig-

ures 26 and 27 indicate that at Mach number 1.41 (fig. 26(a)) the pres-

ence of the canard increased the dlrectional-stability level for the

delta-wing configuration but decreases the directional-stability level

for the trapezoidal-wing configuration. There is little change in the

Cy6 results for either wing configuration. For both wings the presence

of the canards provides a negative C_6 increment or an increase in the

positive effective dihedral.

At M = 2.01 (fig. 26(b)), the presence of the canards decreases

the directional-stability level for both wing configurations, the delta-

wing configuration having the largest decrease. The presence of the

canards at M = 2.01 provides a positive increment in CyB for both

wing configurations; however_ no improvement in Cn6 is shown. A
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decrease in side force at the vertical tail due to the presence of the

canards is consistent with the lower directional-stability level indi-

cated for both wing configurations. As at M = 1.41 the presence of

the canards provide a negative CZ_ increment,

The effects of a 15 ° canard deflection on the sideslip character-

istics at M = 2.01 are shown for both wing configurations in figures 24

and 25. In general, deflecting the canard 15 ° does not materially

affect the directional-stabillty level or the vertical-tail contribution

for either wing configuration. There is little or no effect on Cy_

due to canard deflection for either wing configuration; this result is

consistent with the Cn8 results. However, deflecting the canard 15 °

provides an additional negative increment in C_8 approximately equal

to the negative increment provided by the presence of the vertical tail.

The increase negative values of C_8 occur for both wing configurations

and apparently result from the effect of the canard wake on the leeward

wing panel since about the same negative C_8 increment is obtained

whether the vertical tail is on or off. This effect of canard deflec-

tion on C_ might complicate the lateral-control problem in the case

of a rolling pull-up maneuver.

Effect of component parts for M = 2.01.- The presence of either

wing plan form (vertical tail on) causes a sizable reduction in the

directional-stability level and in the vertical-tail contribution to

directional stability (fig. 27). The CyG results indicate only small

changes in side force at the vertical tail; thus, the decrease in the

directional-stability level due to the presence of either wing results

primarily from a center-of-pressure movement at the vertical tail.

For the trapezoidal-wing configuration the presence of the wing on

the vertical-tail-off configuration results in a substantial increase

in the directional-stability level above an angle of attack of 8° . The

stabilizing increment is not realized, however, when the vertical tail

is installed. The presence of the delta wing on the vertical-tail-off

configuration shows a decrease in the directional-stability level above

an angle of attack of 15 ° . For both wing configurations the negative

increment in the side-force parameter Cy_ (stabilizing) added by the

vertical-tail and ventral-fin arrangement decreased with increasing

angles of attack until about 18 ° where the presence of the vertical tail

no longer provided any increment in Cy_. These side-force results are
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consistent with the directlonal-stabillty results which showa corre-
sponding decrease in directional stability with increasing angle of
attack. The loss of the slde-force increment provided by the vertical
tall and the subsequent loss of directional stability probably results
from adverse flow effects at the vertical tail.

Although the presence of the canard on the body alone has no effect
on C_8, the presence of either wing provides large negative C_8
values with increasing angles of attack. The presence of the vertical-
tail--ventral-fln arrangement with the wing off provides a large initial

increment in C_ that decreases with increasing angle of attack; thus,
the increment provided by the vertical tail reaches zero near an angle
of attack of 16°. The complete model (trapezoidal wing on) has a simi-

lar negative level of C_ (_ = O) which becomesmore negative as the
angle of attack is increased. The effect of the wing is not as great
for the delta-wlng configuration.

In general, the complete-model canard configurations have the same
characteristic decrease in directional stability with angle of attack
as most conventional hlgh-fineness-ratio supersonic configurations. The
presence of the canard surface maybe beneficial or detrimental depending
upon Machnumberand the geometry of the configuration.

CONCLUSIONS

An investigation has been made in the Langley 4- by 4-foot super-
sonic pressure tunnel at Machnumbers of 1.41 and 2.01 to determine the
longitudinal and lateral stability and control characteristics of the
various componentparts of a generalized canard airplane equipped with
either a delta-plan-form or a trapezoidal-plan-formwing. The results
of the investigation indicate the following conclusions:

1. The interference effects of the canard wake on either wing at a
Machnumberof 1.41 results in the loss of most of the lift increment
produced by the canard. At a Machnumberof 2.01, however, a substantial

portion of the canard lift is retained.

2. Because the interference effects of the canard wake appear to be

concentrated near the leading edge of the wing, the proper location of

the wing leading edge with respect to the center of moments may result

in a substantial increase in the pitching-moment increment provided by

the canard even though the total lift of the canard is small.
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3. The canard configurations have the samecharacteristic decrease
in directional stability with angle of attack as most conventional high-
fineness-ratio supersonic configurations. Although the presence of the
canard surface caused a small increase in the directional stability at
a Machnumber of 1.41 for the delta-wing configuration, the presence of
the canards resulted in small decreases in the directional-stability
level at a Machnumber of 2.01 for both wing configurations.

4. A canard deflection of 15° provided an increase in the positive
effective dihedral approximately as large as that provided by the pres-
ence of the vertical tail. This effect of canard deflection might com-
plicate the lateral-control problem in the case of a rolling pull-up
maneuver.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Field, Va., July i0, 1958.
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TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL

Body:

Maximum diameter, in ....................

Length, in .........................

Base area, sq in ......................

Fineness ratio .......................

3.50

37.00

9.582

10.57

Trapezoidal wing:

Span, in ..........................

Chord at body-wing intersection, in .............

Area, sq ft .........................

Aspect ratio ........................

Taper ratio .........................
Thickness ratio .......................

Mean geometric chord, in ..................

Sweep angle of leading edge, deg ..............

Sweep angle of trailing edge, deg ..............
Leading-edge half-angle, normal to leading edge, deg ....

Trailing-edge half-angle, normal to trailing edge, deg . .

25.72
13.25
1.53

3
o.143
O.04

40'

-ll ° -[8'

5
5

Delta wing:

Span, in ..........................

Chord at body-wing intersection, in .............

Mean geometric chord, in ..................

Area, sq ft .........................

Aspect ratio ........................

Taper ratio .........................
Thickness ratio .......................

Sweep angle of leading edge, deg ..............

Leading-edge half-angle, normal to leading edge, deg ....

Trailing-edge half-angle, normal to trailing edge_ deg

22.56

16.5l
13.027

1.53
2.51

o.o36
60

5

5

Canard:

Area, exposed (each canard), sq in ..............

Span, exposed, in ......................

Mean geometric chord, in ..................

6.742

2.25

3.33

Vertical tail:

Area (exposed), sq ft .................... 0.279

Span (exposed), in ..................... 4.25

Aspect ratio ........................ 0.439

Sweep of leading edge, deg ................. 70

Sweep of trailing edge, deg ................. 15 ° 13'

Section .......................... 3/16 inch slab

Leading-edge half-angle, normal to leading edge, deg .... 5

Ventral fins:

Area, each fin, sq ft .................... 0.13

Span (exposed), in ..................... 2.25

Aspect ratio ....................... 0.271

Sweep of leading edge, deg ................. 60

Sweep of trailing edge, deg ................. -77 ° 30'

Leading-edge half-angle, normal to leading edge, deg .... 5

Trailing-edge half-angle, normal to trailing edge, deg 5
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TABLE II.- FUSELAGE ORDINATES

Body station Radius

0

.297

.627

.956

1.285

1.615

1.945

2.275
2.605

2.936

3.267

3.598

0

•076

.1%

.233

.307

.578

.445

•509

.573

.627

.682

•732

5.929
4.260

4.592

4.923

5.255
5.587

5.920
6.252

6.583
18.648

37.ooo

.78O
•824

.865

•903
•94O

•968

.996

i.020

I.042 _ Conical

1.75 f section

1.75
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Figure i.-Axes systems. Arrows indicate positive directions.
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Figure 2.- Continued.
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(c) Details of the canard surface, ventral fln, and vertical fin.

Figure 2.- Concluded.
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Figure 4.- The aerodynamic characteristics of various components of the

trapezoidal-wing configurations. M = 1.41.
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Figure 4.- Continued.
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Figure 5.- The aerodynamic characteristics of various components of the

trapezoidal-wing configuration. M = 2.01.
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Figure 2_.- Continued.
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Figure 25.- Concluded.
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